Multiple Routes of Pesticide Exposure for Honey Bees Living Near Agricultural Fields
Christian H. Krupke,1* Greg J. Hunt,1 Brian D. Eitzer,2 Gladys Andino,1and Krispn Given1
1Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America
2Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
Guy Smagghe, Editor
Ghent University, Belgium
* E-mail: [email protected]
Conceived and designed the experiments: CK GH BE. Performed the experiments: CK BE GA. Analyzed the data: CK BE. Contributed reagents/materials/analysis tools: BE CK. Wrote the paper: CK GH BE. Maintained and transported honeybee colonies used for these experiments: KG.
Received August 18, 2011; Accepted November 23, 2011.
Abstract
Populations of honey bees and other pollinators have declined worldwide in recent years. A variety of stressors have been implicated as potential causes, including agricultural pesticides. Neonicotinoid insecticides, which are widely used and highly toxic to honey bees, have been found in previous analyses of honey bee pollen and comb material. However, the routes of exposure have remained largely undefined. We used LC/MS-MS to analyze samples of honey bees, pollen stored in the hive and several potential exposure routes associated with plantings of neonicotinoid treated maize. Our results demonstrate that bees are exposed to these compounds and several other agricultural pesticides in several ways throughout the foraging period. During spring, extremely high levels of clothianidin and thiamethoxam were found in planter exhaust material produced during the planting of treated maize seed. We also found neonicotinoids in the soil of each field we sampled, including unplanted fields. Plants visited by foraging bees (dandelions) growing near these fields were found to contain neonicotinoids as well. This indicates deposition of neonicotinoids on the flowers, uptake by the root system, or both. Dead bees collected near hive entrances during the spring sampling period were found to contain clothianidin as well, although whether exposure was oral (consuming pollen) or by contact (soil/planter dust) is unclear. We also detected the insecticide clothianidin in pollen collected by bees and stored in the hive. When maize plants in our field reached anthesis, maize pollen from treated seed was found to contain clothianidin and other pesticides; and honey bees in our study readily collected maize pollen. These findings clarify some of the mechanisms by which honey bees may be exposed to agricultural pesticides throughout the growing season. These results have implications for a wide range of large-scale annual cropping systems that utilize neonicotinoid seed treatments. Other Sections▼